

Comparison of irradiation data from different numerical weather models and their combination in multi-model forecasts

Oral presentation at Intersolar Conference, Munich 2021 Michael Bührer¹, Karl G. Gutbrod¹, Thomas Kanefendt², Dominik Beinert², Rafael Fritz²

¹ meteoblue AG - www.meteoblue.com

²Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE - www.fraunhofer.iee.de

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential of machine learning
- Operational Application

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential of machine learning
- Operational Application

Relevance and objectives:

- Radiation forecasts are input for PV production forecast
- Accurate forecasting of PV power is crucial for:
 - Grid integration
 - Electricity trading
 - Energy management systems
 - Smart home management
- Minimizing forecast errors by implementing machine learning methodologies to combine:
 - Different numerical weather models
 - Real time satellite data
 - Cloud motion techniques

Relevance and objectives:

Hypothesis: Mixing different models can significantly reduce forecasting errors

Research questions:

- 1. Do multi-models with different initialization data achieve lower errors than combinations based on the same data source?
- 2. Will multi-models with 3-4 models across all sites considers achieve lower errors than multi-models with only two models?

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential of machine learning
- Operational Application

Data and method overview:

- Measurement data from three different measuring networks (DWD, BSRN & GAW) for a total of 40 stations
- Simulation data from five different weather models:
 - ECMWF: IFS

meteoblue

weather 🌣 close to you

- DWD: ICON-EU
- NOAA: GFS
- meteoblue NEMS & NEMS2

Data and method overview:

- Comparison based on the common error values for 2016 & 2017 (after MESOR 2009)
- Comparison of the individual models
- Comparison of different model combinations (without weighing)
- ECMWF-IFS & meteoblue multimodal as reference (highly accurate)

#	Wettermodell	Räumliche Auflösung	Anbieter	Land	Initialisierung
1.	GFS	22km	NOAA ¹	USA	GFS
2.	NEMS30	30km	meteoblue ¹	Schweiz	GFS
3.	NEMS2-30	30km	meteoblue ¹	Schweiz	ECMWF
4.	ICON	13km	DWD ²	Deutschland	ECMWF
5.	multimodel	3km-30km	meteoblue ¹	Schweiz	GFS & ECMWF
6.	IFS	9km	ECMWF ²	England	ECMWF

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential
- Operational Application

Validation of **single models**:

• Comparison of the systematic error (BIAS)

Validation of **single models**:

• Comparison of the absolute error (RMSE)

Validation of various (2) multi-model combinations:

• Comparison of the systematic error (BIAS)

Validation of various (2) multi-model combinations:

• Comparison of the absolute error (RMSE)

Results:

- GFS + NEMS is better than ICON + GFS.
- NEMS + ICON performs best, regardless of whether NEMS or NEMS2, or both, are used.
- -> The source of initialization data is not crucial.
- A simple average of two models significantly reduces the error compared to the single models.
- Multimodelling with high BIAS models is less effective

Validation of various multi-model combinations:

• Comparison of the systematic error (BIAS)

Validation of various multi-model combinations:

• Comparison of the absolute error (RMSE)

Conclusion:

- Multimodelling significantly reduces the forecast errors for radiation
- <u>Different</u> cloud schemes within the model are important, not the initialization
- Multi-model combinations of 3 or 4 models (25-30%) perform better than combinations of 2 models (20.25%)

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential of machine learning
- Operational Application

Weather models are evolving

- Raw models are steadily improved
- Validation of raw models from 2017-2020 show a slight decrease of solar radiation forecast errors

06-10-2021

© meteoblue AG

06-10-2021

© meteoblue AG

Weather models are evolving

- New global models were released e.g. GEM15 of the Canadian weather service
- High resolution models for Central Europe were released (e.g. ICON-D2, AROME2)
- Different models have different time horizons, regional coverage
- Satellite data is required for real time corrections
- Different weighting for seasonal and regional accuracy

machine learning is required for automatization

- Relevance and objectives of this study
- Data and method overview
- Validation of (multi-)models
- Potential
- Operational Application

Integrated radiation forecast with machine learning methods

Take home message

- Forecasting is crucial for efficient PV system operation
- Combining multiple models reduces forecast errors significantly
- Different models have different temporal and regional availability
- Machine learning algorithms enable automated combination of multiple models with real time satellite data
- Operational system is steadily improved, with data availability