

Trends in System Design

October 2021, Sercan Keskinel

Highlights of Enerparc

100 % management-owned

 Strategy of a lean and dynamic organization in the PV industry

2,100 MWp own power plants as IPP

 Leading independent energy producer in photovoltaics in Europe

2,800 MWp under O&M services

→ Leading O&M-service provider in Europe with own teams

3,470 MWp connected

 EPC-execution capacity of more than 50 MW per month

Biggest PPA area for Enerparc

 Completion of 90 MWp on an area of 92 ha in Gaarz, Germany

PPA with Deutsche Bahn

 Long-term Power Purchase Agreement of 30 years

Technical Design in large scale PV – "historical" development

PV as an alternative and expensive energy

 → For a long time, interpretation of PV for non-commercial use only, such as offgrid applications etc

Less projects & more resource

 Less variety of PV components compared to today, similar system designs with minor differences

Quality assurance and standards

 Higher importance of some phenomenons such as PID, GCR with the deployment of PV

Technical design in large scale PV – pros & cons

Thinfilm vs. crystalline

- → Crystalline technology with a market share of 95%
- Higher efficiency of crystalline modules in general

Fixed vs. tracker

- No moving parts of fixed systems as advantage against tracker systems
- 10-20% more yield for tracker depending on the latitude

Central vs. string

- Easier maintenance and exchange of smaller mini-central inverters up to 250 kW
- Lower CAPEX cost of larger central inverters

Technical design in large scale PV – "new" constraints

Land prices

- Higher overload ratio and GCR requests for higher land prices
- Using East-West structure and tracker solutions

Local regulations

0

REGULATIONS

- Country specific regulations and licensing processes affect system designs
- Height limitation for structures and/or buildings

Biodiversity

- Lower biodiversity and soil quality between and underneath of modules for higher GCR
- → Advantage of using bifacial modules

Region specific designs

Optimum LCOE

- → Finding the balance between the gains and the losses
- More shading irradiance losses in Northern than Southern Europe for the same GCR level

Optimum GCR

- → More installed capacity and total yield with higher GCR
- Lower shadowing losses but longer cables and larger project area with lower GCR

Region specific designs

Overload Ratio

- Finding the balance between higher yield and the increased CAPEX
- More inverter clipping losses in Southern than
 Northern Europe for the same overload ratio

Performance Ratio

- → Lower PR with higher overload ratio coming from the inverter clipping losses
- Contractually binding PR guarantees for external parties and financing entities

EN

Future trends

More efficient modules

- → Less material, larger and thinner wafers
- Higher efficiency with shingle cells, lower ohmic losses because of half-cut cells, more and more multi-busbars

New technologies

- → Higher yield with bifacial modules
- Mono-crystalline almost monopoly, new Perovskite tandem cells as a new high efficient promising technology

New applications

- $\rightarrow\,$ Floating PV to become more worldwide
- Electricity and food production with Agri-PV
- → BIPV, carport, solar trees

Summary

Complexity

 Several different parameters such as PPA structures, land prices, ecological requirements as a main driver

Financial engineering

 Finding the optimum balance between a healthy cash-flow, project cycle and technical standards and requirements

Long-term strategy

 Following up new trends in PV market and adapting in earlier stages to system designs, installation and O&M

Enerparc AG

Executive Board: Chairman of the Supervisory Board: Trade register:

Christoph Koeppen, Frank Müllejans, Stefan Müller Dr. Andreas Tietmann Hamburg District Court HRB 112789

Enerparc AG Zirkusweg 2 20359 Hamburg – Germany +49 (0) 40 7566 449 0 mail@enerparc.com www.enerparc.de

© Enerparc AG