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* Report: The Use of Advanced Algorithms in PV Failure Monitoring
* Machine Learning 101
» Overview of ML application characteristics in PV fault detection
 Case Study: Unsupervised PV fault detection algorithms

* Algorithms

» Comparison / results

» Conclusions
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Report ,(i‘-‘

The Use of Advanced Algorithms in PV Failure Monitoring

» Statistical and machine learning (ML) approaches

» Data sources

22 Fault detection methods included
« Comparison of 8 unsupervised algorithms

* Assessment of information content of different data sources
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Machine Learning 101 :Ci‘l‘

Making machines (algorithms/computers) learn patterns looking only at the data,
without explicit rules given

Examples of ML models: artificial neural networks, linear regression, decision
trees, support vector machines
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Machine Learning 101

» Supervised learning: the data contains a target
variable, also called label, which we try to
estimate/predict (e.g. identify a data points as faulty,
having other data points labeled as faulty and normal)

* Unsupervised learning: there is no target variable, the .I I
interest is in finding interesting patterns in the data (e.g. J
finding patterns in the data, identifying different groups of

data points that can be then studied and labeled as
faulty/normal)
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Overview: ML applications in PV faut detection

m Others
= Power

® [rradiance

PVPS

Most used parameters

an

® |-V data [Voc, Isc, MPP point]
= Temperature

m Current and/or Voltage [DC - AC]

Most used ML models

m Artificial Neural Networks = K Nearest Neighbors
= Support Vector Machines = Linear Regression

® Fuzzy Systems m Others (11 models)
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Unsupervised Fault Detection Algorithms :(i‘-‘

Input data does not contain labeled faults

We find patterns in the data, and map them to threshold-dependent classes
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High-level distinction
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First Group

Estimation of the normal behavior of the system

A fault is identified as a significant deviation from
the estimated normal behavior
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Second Group
Study of the statistical properties of data

A fault is identified by a user from the
observation of the time evolution of
statistical/structural indices
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Algorithms: Group 1
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Estimating normal behavior and identifying

According to other
systems’ behavior
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Algorithms: Group 1
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 SolarClique: Detecting Anomalies in
Residential Solar Arrays

 Local outlier factor-based fault detection
and evaluation of photovoltaic system

 Real-time fault detection in massive
multi-array PV plants based on machine
learning techniques

* Online Fault Detection in PV Systems

* Intelligent Real-Time Photovoltaic Panel
Monitoring System Using Atrtificial
Neural Networks
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Normal behavior estimated
~ according to other systems’
behavior

Normal behavior estimated
from external factors
(Irradiance, temperature)
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Algorithms: Group 2 ,(;‘-‘

Study of the statistical properties of data

Which one?
Time evolution of statistical / \ Time evolution of

indices network measures
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Algorithms: Group 2
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« A Statistical Tool to Detect and Locate
Abnormal Operating Conditions in
Photovoltaic Systems

« Statistics to Detect Low-Intensity
Anomalies in PV Systems

« Complex Network Analysis of
Photovoltaic Plant Operations and
Failure Modes
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Time evolution of statistical
indices

Time evolution of statistical
interdependencies of
selected monitored sensors
(network measures)
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High variability in the number of
identified faults

Generally low agreement
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SC - SolarClique: Detecting Anomalies in Residential Solar Arrays

LOF - Local outlier factor-based fault detection and evaluation of photovoltaic system

RTFD - Real-time fault detection in massive multi-array PV plants based on machine learning techniques
OFD - Online Fault Detection in PV Systems

NN - Intelligent Real-Time Photovoltaic Panel Monitoring System Using Atrtificial Neural Networks



Results — Group 2

Statistical indices

Network
measures
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Conclusions (gn
(aa

* The application of ML and statistical approaches is still new, with high variability
in type of application (input data and aim) and potential results

* Need for benchmarking datasets for unsupervised approaches

« Sharing of data and algorithms might help in:
* The benchmarking process

» Assessment of stability and reproducibility of ML models
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www.iea-pvps.org
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